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Abstract: Coding is essential in all communications and in all multi-operation
devices, and errors do occur. For error control, the method in vogue is to use code
words with redundant digits. The number of redundant digits is determined based
on two things — the number of messages and the kind of errors that need to be
controlled. For efficient coding the redundant digits have to be kept to the
minimum.

In this paper we introduce the idea of limited error patters while using the

code alphabet Z, ={0,1,2,...,q—1},modq, when g > 3. We define limitations of

the errors in a position by substitution of the character there by a specified number
of other characters, rather than by any other character. This is not possible through
Hamming approach, because there a character in an error could be substituted by
any other of the g—1 characters. The firm mathematical base is provided by use of a
metric from the class of S-K metrics, Hamming metric being one of these.

The paper gives upper bounds on the codeword lengths for various kinds of
“random limited error patterns”. Examples and discussion bring out the
tremendous improvement and generalization of Rao Hamming bound.

Keywords: Hamming distance, S-K metric, error patterns, error control in codes,
bounds.
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1. Introduction

With the advancement of information technology, coding theory is having new
challenges. This is because the communication channels, the automata or the
electronic devices, where they find use have varying characteristics. The errors
patterns differ. Theory of error control coding started simply with binary code
words of fixed length, with basically three parameters, namely the number
information digits, the check digit and the Hamming distance between n-tuples. The
errors considered were the random errors and the burst errors. When studies were
extended to g-nary case, these things continued without further necessary
refinement. A single error continued to be an error in any position of any
magnitude. The cause for this can be traced in the inbuilt nature of Hamming
distance. Lee distance [1], yet another distance is also fixed in nature, with limited
scope for study. The work progressed mainly in two directions, these related to
optimality considerations and construction of codes capable of correcting a certain
number of random error correcting codes. Practically all designed distance codes,
BCH, Goppa, Helgert, turned out to be “bad”, with rate falling with increasing
length, that is asymptotically [1].

Since error control coding now is not limited to distant communication only,
mathematics was needed which can suitably match the characteristics of the device
for which the coding was required and can consider the correction of only those
patterns that need to be corrected rather than the wasted capacity of the correcting
non-errors by default.

Sharma and Kaushik][4,5]investigated the question of other possible
different ways of defining distances/metrics (S-K distances/metrics) over

Z, ={O,1, 2,..., q—1}, modq, when q > 2. They found a whole class of possible
distances defined over Z by considering partitions of Z , satisfying certain

conditions that we take up in the next section.

This class of S-K distances, beside being rich in choice for properly matching
the channel, provides possibilities of handling a wide variety of errors, which was
not possible with Hamming distance or even with Lee distance considerations.
Hamming and Lee metrics are in fact the particular rather extremal cases of S-K
studies, refer to [4].

With nature of the errors vastly different and S-K metric, it is possible to
consider codes which will have well defined error characteristics and will be far
more efficient than otherwise possible with Hamming distance consideration. Since
only those errors patterns of a given weight, that form a part of the total error
patterns of that weight, are considered for correction, we call them “codes
correcting partial errors”. This is undertaken in this paper.

The paper is organized as follows: Section 2 is preliminary, where we
recapitulate basic concepts, definitions and results required for later studies. In
Section 3 we introduce the idea of partial error correction and obtain lower bounds
for a variety of partial error correction. Section 4 gives examples of the partial error
correcting codes.
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2. Preliminaries

We shall be considering vectors over Z, ={0,1, 2,..., q—1} , the ring of integer,
mod g, where in general in our study, q > 3.

Definition 1. Hamming Weight and Distance: Given a vector
u =(a1, a,, ..., a ) over Zq, the Hamming weight of vector u is the number of its

e 8,
nonzero components.

Next, given two n-vectors u=(a,,a,,...,a,) and v=(b,b,,.,b,) the
Hamming distance between u and v is the number of components, in which the two
n-tuples differ or is the weight of their component-wise difference vector.

Definition 2. Sharma-Kaushik (S-K) Partition: Let us consider a partition of
Z,,into (disjoint, nonempty) subsets B;,B,.., B ,, where m is an integer greater

than or equal to 2, such that

(i) B, = {0};

(i) forieZq,ieBs<:>q—ieBs;

(iii) if ieB,, and jeB,, and s>t (in the order of their natural occurrence in
Z,))

then

min{i,q—i}>min{j,q- j};
(iv) if s>, |B|>|B,| except for s =m—1, in which case we may have

1
B =38

where |B|= number of elements in the set B.
Note: When m = 2, we will call it Hamming partition of Z, . Also when each
|BS| =2, for 0<s<m-2, the partition will be called Lee partition, since in that
case it leads to Lee-metric, referto Berlekemp [1].

Definition 3. S-K weights and distances:

S-K weights: It can be mentioned that in S-K scheme of things, the weights
and distances are defined in reference to a S-K partition. Thus for different S-K
partitions of Z,, these, in general, will have different values for the same element

of Z,, or for a vector over Zq.
We first define the S-K weight of an element | € Z,, corresponding to a S-K
partition P={B,,B,.., B, ,}. Denoting it by W,(j), it is given by
W.(j)=sif jeB,,0<s<m-1.
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Next, we define S-K weight W,(u) of u=(a,a,..a,), a ez,

corresponding to S-K partition P={B,,B,,.., B, .}, as the sum of the class-weights
of its components, i.e.,

Wy (0)= 2 W, 3.

S-K Distance between two vectors: Given two n-vectors U = (al,az,..,an)
and v = (bl,bz,..,bn), where a, b, €Z,, the S-K distance between vectors U and

v associated with S-K partition P is defined as the sum of the S-K distances between
their components, i.e.,

dp (u’v)zzn:dp(ai'bi)ziWP(ai -b),
4o (U,V) =W, (u—v)=Yd_(a —b,). referto [2].

i=1

3. Partial error patterns

Definition 4. Partial sets: It may be noted that in defining the S-K partition
P={B.B....B,}. of Zq arranged in a circular order, By is really the collection of

all elements of Zq , on either side of 0, assigned a distance s from 0. We can thus

call B, a subset or a “partial set™” of Z at distance s from 0.

More generally, for an arbitrary element j € Z,, its “partial set at a distance s”
is given by B, (j) ={B, + j},, the addition being in each element of B, mod g.

Example 1. Suppose that we have Zq ={0,1,2,3,4,5,6} with q=7, and
let us consider a S-K partition of Z, given that

P={B,={0},B ={16},B,={2,3 4,5}

We see a partial set of weight 1 for 0 is B, and the “partial set of weight 2** for 0 is
B,.

Further the weight-1 partial set of another element, say of 5, is set of those
elements of Z,, given by B/(5)=B+5={1+56+5},={6,4}, and
B,(5)=B,+5={2+5,3+5,4+5,5+5}, ={0, 1, 2, 3}.

Note: In this example it may be seen that the other two possible S-K partitions
of Z, are

P.={B,={0}, B, ={16},B,={2,5},B,={3,4}}
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and P, ={B,={0},B,={1,234,56}}, respectively giving Lee and Hamming
distances on Z,, in terms of the definitions above. The partial sets of different

weights (0, 1, 2 and 3 in the case of P_ and of weight 0, 1 in the case of PB,), the
elements in P, and P, as can be seen are differently defined.

Definition 5. Patterns of limited errors. It may be easily realized that errors
follow a pattern, which differs from a system to system. A system in which an
entry in a code word is received as another symbol, the error may be called
“substitution error”. With S-K scheme of things, it is possible to consider various
different limited kinds of substitution errors that were not possible under Hamming
scheme of things. Some of the possible ones are illustratively detailed below:

1. Single the error or e-random errors, in which an entry j is substituted by

an element of B, + ] or some e-positions J,, J,,.., J; are similarly substituted
correspondingly by an entry with their sum with B, + j,, B, + j,, ..., B, + J.. We may
call a code correcting e such errors “e B, -error correcting code”, and it must have a

minimum distance of 2e +1, caused by B, added substitution positions.
2. Single error or e-random errors, in which an entry j is substituted by an
element of B, + J or some e-positions are similarly substituted by an entry with

their sum with B, .

One can easily consider different kinds of substitution errors following
modifications depending on the partial set (s) that determines the error patterns.

In obtaining a bound on a necessary number of parity-checks for an e-error
correcting code, it is customary to define a volume of a sphere of radius e around
every code word and consider their mutual disjointness, etc. In the S-K study that
we undertake, this idea can be looked more closely and, given an n-vector u, we can
find numbers of patterns which have a specified S-K distance from the vector u.

In the theorems that follow, we consider lower bounds on the number of parity
check digits, r = n — k.

Theorem 1. Given a S-K partition P = {BO, B,..., Bm_l} of Zq, q prime, a
necessary condition for the existence of an (n, k) code over Z q» correcting an error
in e-positions of each of weight one is given by

e

z@slr <q™* or n—k > log, {z@m}

t=0 t=0
P r oo f: It may be recalled that the elements in B, are of S-K weight 1 and
that given an entry j, an error of weight 1 is obtained by substituting it by an
element of B, + j. This can happen in | B, | ways.
Thus, given a code word, the number of vectors at a distance 1 from it are

el
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n
Similarly, the error patterns at a distance 2 are (2] |Bl|2, and those at a

. n e
distance e are (e] B,

Thus, the total number of vectors that are at a distance of e or less are from a
vector u of length n:

n e n e-1 n e2 n e.(n t
(e]|sl| +(e—1]|81| +(e_2J|Bl| +...+(1J|Bl|+1or;(tJ|Bl|.

In order that the code is able to correct e-errors of S-K weight 1 each, these
vectors around any code word should be disjoint, that is for (n, k) code of qk code
words,

e (n
qkz( ]'Blltéq”,
o\
(N t n-k
or Z[ J|Bl|q .
o\t

This proves the result.

Note: It may be worthwhile to reflect on the idea of partial sets of certain
weights around elements of Z . Let us consider the keyboard of a computer, it has
keys for various numbers and other symbols. Imagine punching a number or an
alphabet key on it. While word processing, one may erroneously strike a key on one
or two positions on either side of the right key, rather than any key on the keyboard.
These likely positions will constitute the partial set of errors for the number or the
symbol key pressed.

Next we want to consider e-random errors, where the substitution errors are
caused by elements at distances of 1 or 2, that is from two segments of partial
errors are handled for correction.

First we obtain the result in

Lemma 1. Given a S-K partition P = {BO, B Bm_l} of Z,, qprime, and a
vector of length n, the number of vectors obtained by substituting in e-positions,
each position j by elements of B, + j or B, + ] , is given by

qu|+|82|)€-

Proof: Letusconsider that out of e positions selected, k of them have entry

j that is substituted by an entry from B, + j and the other e-k by entries

fromB, + J.
e
k
Thus the total, as k varies from 0 to e, gives the required number of vectors as

Then this can be done in ( ]|Bl|k B, ways.
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. (e o1 (e o e . .
[|BZ| +@|Bl||sz| l+[2J|Bl|2|BZ| 2+...+(kJ|Bl|k|Bz| k+....+|Bl|J

or (|B|+|B,|)".
This proves the result.
Note: It can immediately be seen in place of B, and B,, that the result will
hold for any two distinct or non-distinct partial sets B, and B,, Also it can be

generalized from just two to any numbers of partial-sets. We state the result for any
s partial-sets below:

Lemma 2. Given a S-K partition P = {BO, B Bm_l} of Zq , g prime, and a

vector of length n, the number of vectors obtained by substituting in e-positions,
each position j by elements of k partial sets B, +j, B, +j, ..., B +],

s <m-1,is given by
le.

Theorem 2. Given a S-K partition P = {BO, B, Bmfl} of Z,, q prime, a

+ +..+|B, |)e.

B,

necessary condition for the existence of an (n, k) code over Z , correcting the error

in e or less positions so that in these positions, the entry j when an error is received
asan elementof B, + j or B, + j isgiven by

3 CIRCHRTRS

t=0

n
P roof: Now e positions of out n can be chosen in ( j ways and by the
e

Lemma 2 given, these can undergo defined changes in QB1| + |Bz|)e ways.
Thus, the number of ways any exactly e defined errors can occur, is

ey

The total number of the error patterns in e or less positions is then given by

N IR

With this number of error patterns around each code, the word to be disjoint,
we get the necessary condition as

37 0o <a.

t=0
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Note: Hamming bound case: In the Hamming case, the partition of Z is two

partial sets B, ={0}, andB, ={0,1,...,q—1}, so that | B, |=q—1, and the result of
these theorems reduces to the famous Rao Hamming bound [3].

Example 2. Let Z,={0,1,2,3,4,5,6,7,8,9,10,11,12}, q = 13; to illustrate
the results of the above two theorems we consider two S-K partitions of Z ;.

Case A. Let us first consider the S-K partition given by

P = {Bo’ B..B,, Bs}’
where
B, = {0},B,={112}, B, ={2,3,4,9,10,11}, and B, ={5,6,7,8}.

For an (n, k) code correcting single error of weight 1, from Theorem 1, we
have the bound

n K
1+[1J|Bl| <q"™*, where n—k=r

q -1

B
For different values of r, here| B, |=2, the upper-bound on n for (n, k),

k =n—r, is given in Table 1. In the table, we have compared the limited | B, |

single error correction bound by a Hamming single error correcting bound. The
gains are quite astonishing, for example for r = 3, these results tell us that the

numbers of messages for | B, | error correction can use 13'°* messages while under

-Hamming criterion, this number is a small fraction 13, and this proportion
increases exponentially.

orn<

For calculation of the rate, we have used the usual ratio, R = 5

n
Table 1
Upper bound on n Upper bound on n
r with a S-K single error with a Hamming-single error
n k R N k R
16 5 0.83333 1 0 0
2| 84 82 0.97619 14 12 0.85714
3 | 1098 1095 0.99727 183 180 0.983606
4 | 14280 14276 0.99972 2830 2826 0.998586
5 | 185646 185641 0.99997 30941 30936 0.9998384
6 | 2413404 | 2413398 | 0.999998 | 402234 | 402228 | 0.9999850
7 | 31374258 | 31374251 | 0.9999998 | 522943 | 5229036 | 0.999998661

Case B. Next we consider, for the S-K partition P,, bounds on n for code

correcting errors in a single position which are either of S-K weight 1 or S-K weight
2. From Theorem 2 this bound is given by
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n r_q
1+ |(B|+IB,)<q"*or ng—9 —*
@q [+[B])<a (B.1+IB,)

In the example when g = 13, for different values of r here ((B,|+|B,|)= 8, the
upper-bound on n for (n, k), r = n -k, is given in Table 2.

Table 2
r Upper bound on n Upper bound on n
with S-K single error with Hamming-single error

n k R n k R
1]1 0 0 1 0 0
2121 19 0.90476 14 12 0.85714
3| 274 271 0.989051094 | 183 180 0.983606
4| 3570 3566 0.998879551 | 2830 2826 0.998586
5 | 46411 46406 0.999892266 | 30941 | 30936 0.9998384
6 | 150837 | 150831 | 0.999960222 | 402234 | 402228 | 0.9999850
7 | 1960891 | 1960884 | 0.99999643 | 522943 | 5229036 | 0.999998661

Here again, the thing to be observed is the number of messages with the same

number of parity checks, correcting the limited patterns.

Example 3. Next let us consider the S-K partition of Z given by

where

Pz :{Bo’BvBZvBs}v

B, = {0}, B, ={1,2,11,12} and B, ={3,4,9,10}, B,=15,6,7,8},

now for an (n, k) code correcting single error of weight 1, then (by Theorem 1) we

have

n
1+[1]|Bl| <q"™*, where n—k=r or n<

and the numerical values are as given in Table 3.

Table 3
r L_Jpper bo_und onn ) Upper bc_)und onn
with S-K single error with a Hamming-single error

n k R n k R
113 2 0.666666 1 0 0
2|42 40 0.952380952 | 14 12 0.85714
3 | 549 546 0.994535519 | 183 180 0.983606
4 | 7140 7136 0.999439775 | 2830 2826 0.998586
5 | 92823 92818 0.999946134 | 30941 | 30936 0.9998384
6 | 1206702 | 1206696 | 0.999995027 | 402234 | 402228 | 0.9999850
7 | 15687129 | 15687122 | 0.999999553 | 522943 | 5229036 | 0.999998661

Suppose that we want to correct an error in 1 position of weight 1 and weight
2, then (by Theorem 2) we have
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n B q -1
1+ B,|+|B,|)<q"*or ns———— |
@q +[8) (B +1B,])

for different values of r, the upper-bound on n for (n, k), r = n -k, is given in
Table 4.

Table 4
r Upper bound on n Upper bound on n
with S-K single error with a Hamming-single error

n k R n k R
1]1 0 0 1 0 0
2|21 19 0.90476 14 12 0.85714
3| 274 271 0.989051094 | 183 180 0.983606
4| 3570 3566 0.99887955 | 2830 2826 0.998586
5 | 46411 46406 0.99989227 | 30941 | 30936 0.9998384
6 | 150837 | 150831 | 0.999960222 | 402234 | 402228 | 0.9999850
7 | 1960891 | 1960884 | 0.99999643 | 522943 | 5229036 | 0.999998661

Example 4. Here we shall illustrate some numerical bounds on n when instead
of a single error, the errors in any two or less positions are considered of weight 1
and then again either of weight 1 or 2.

Let Z,={0,1,2,3,4,5,6,7,8,9,10,11,12}, q = 13, consider S-K partition of
Z,, given by
P={B,.B,B,,B,,
where
B,={0}, B,={1,2,11,12}, B, ={3,4,9,10} and B, ={5,6,7,8}.

Case A. Suppose that we want to correct the error in two positions of weight 1,
then (by Theorem 1) we have

n n o~
1+(1J|Bl| +[2j||31|2 <q™,

n(n-1)
2
4n+8n(n-1)<q" -1,

n|B,|+ B[ <q -1

4n (2n-1)<q" -1 or n(2n—1)sqr_1.

This is a quadratic Diophantine in-equation. By trial it is quite possible to find
the largest value of n satisfying this inequality. For different values of r, the upper-
bound on n for (n, k), r = n -k, is given in Table 5.
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Table 5

Upper bound on n _Upper bound on n

with S-K single error with a Hamming-single
i g -1 error

(n (2n—1)£ 2 j (n(Gn—S)S qlz—lJ

n k R n k R

111 0 0 1 0 0
214 2 0.5 2 0 0
3116 13 0.8125 5 2 0.4
4|60 56 0.93333 20 16 0.8
5215 | 210 | 0.976744186 | 72 67 0.93056
6| 777 | 771 | 0.992277992 | 259 253 0.97683
7 | 2800 | 2793 | 0.9975 933 926 0.9925

Case B. Next, let us consider the errors in two positions of weight 1, then (by
Theorem 1) we have

n n
N CEIEH LY
1+8n+32n(n-1)<qg"*,
8n+32n(n-1)<g"* -1 or 8n(4n-3)<q"*+1,

n-k
n(4n—3)£q—+1,

for different values of r, the upper-bound on n for (n, k), r = n =k, is given in
Table 6.

Table 6
Upper bound on n . Upper b°“r!d onn
with S-K single error with a Hamming-single
r 0 -1 error
[n (2n-1)< 2 j [n(6n—5)s q 1)
12
n Kk R n Kk R
1|1 0 0 1 0 0
212 0 0 2 0 0
318 5 0.625 5 2 0.4
4130 26 0.86666 20 16 0.8
5 | 108 103 0.953704 72 67 0.93056
6 | 388 382 0.984536 259 253 0.97683
7 | 443 436 0.984199 933 926 0.9925
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4. Concluding remarks

In this paper we have introduced the idea of limited patterns of errors and have
obtained results on the upper bounds on word lengths for specified limited patterns
of errors. The use of S-K partitions and distances provides a choice of metrics
matching the channel characteristics.

It seems quite possible to extend this study to other bounds and to
constructions of codes correcting limited patterns of errors.
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