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Abstract: Coding is essential in all communications and in all multi-operation 
devices, and errors do occur. For error control, the method in vogue is to use code 
words with redundant digits. The number of redundant digits is determined based 
on two things − the number of messages and the kind of errors that need to be 
controlled. For efficient coding the redundant digits have to be kept to the 
minimum.  

In this paper we introduce the idea of limited error patters while using the 
code alphabet { }0,1, 2,..., 1 ,mod ,qZ q q= −  when q > 3. We define limitations of 
the errors in a position by substitution of the character there by a specified number 
of other characters, rather than by any other character. This is not possible through 
Hamming approach, because there a character in an error could be substituted by 
any other of the q–1 characters. The firm mathematical base is provided by use of a 
metric from the class of S-K metrics, Hamming metric being one of these.  

The paper gives upper bounds on the codeword lengths for various kinds of 
“random limited error patterns”. Examples and discussion bring out the 
tremendous improvement and generalization of Rao Hamming bound. 

Keywords: Hamming distance, S-K metric, error patterns, error control in codes, 
bounds. 
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1. Introduction 

With the advancement of information technology, coding theory is having new 
challenges. This is because the communication channels, the automata or the 
electronic devices, where they find use have varying characteristics. The errors 
patterns differ. Theory of error control coding started simply with binary code 
words of fixed length, with basically three parameters, namely the number 
information digits, the check digit and the Hamming distance between n-tuples. The 
errors considered were the random errors and the burst errors. When studies were 
extended to q-nary case, these things continued without further necessary 
refinement. A single error continued to be an error in any position of any 
magnitude. The cause for this can be traced in the inbuilt nature of Hamming 
distance. Lee distance [1], yet another distance is also fixed in nature, with limited 
scope for study. The work progressed mainly in two directions, these related to 
optimality considerations and construction of codes capable of correcting a certain 
number of random error correcting codes. Practically all designed distance codes, 
BCH, Goppa, Helgert, turned out to be “bad”, with rate falling with increasing 
length, that is asymptotically [1].  

Since error control coding now is not limited to distant communication only, 
mathematics was needed which can suitably match the characteristics of the device 
for which the coding was required and can consider the correction of only those 
patterns that need to be corrected rather than the wasted capacity of the correcting 
non-errors by default.  

S h a r m a  and  K a u s h i k [4, 5] investigated the question of other possible 
different ways of defining distances/metrics (S-K distances/metrics) over 

{ }0,1, 2, ..., 1 , modqZ q q= − , when q > 2. They found a whole class of possible 
distances defined over ,qZ by considering partitions of ,qZ  satisfying certain 
conditions that we take up in the next section.   

This class of S-K distances, beside being rich in choice for properly matching 
the channel, provides possibilities of handling a wide variety of errors, which was 
not possible with Hamming distance or even with Lee distance considerations. 
Hamming and Lee metrics are in fact the particular rather extremal cases of S-K 
studies, refer to [4]. 

With nature of the errors vastly different and S-K metric, it is possible to 
consider codes which will have well defined error characteristics and will be far 
more efficient than otherwise possible with Hamming distance consideration. Since 
only those errors patterns of a given weight, that form a part of the total error 
patterns of that weight, are considered for correction, we call them “codes 
correcting partial errors”. This is undertaken in this paper. 

The paper is organized as follows: Section 2 is preliminary, where we 
recapitulate basic concepts, definitions and results required for later studies. In 
Section 3 we introduce the idea of partial error correction and obtain lower bounds 
for a variety of partial error correction. Section 4 gives examples of the partial error 
correcting codes.   
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2. Preliminaries 

We shall be considering vectors over { }0,1, 2, ..., 1qZ q= − , the ring of integer, 
mod q, where in general in our study, q > 3. 

Definition 1. Hamming Weight and Distance: Given a vector 
( )1 2, , ..., nu a a a=  over ,qZ  the Hamming weight of vector u is the number of its 

nonzero components. 
Next, given two n-vectors ( )naaau ,...,, 21=  and ( )nbbbv ,...,, 21=  the 

Hamming distance between u and v is the number of components, in which the two 
n-tuples differ or is the weight of their component-wise difference vector.  

Definition 2. Sharma-Kaushik (S-K) Partition: Let us consider a partition of 
,qZ into (disjoint, nonempty) subsets 0 1 1, , ..., ,mB B B −  where m is an integer greater 

than or equal to 2, such that 
(i)   { }00 =B ; 
(ii)   for qZi∈ , ss BiqBi ∈−⇔∈ ; 

(iii)  if sBi∈ , and tBj∈ , and s t>  (in the order of their natural occurrence in 

qZ ) 
then  

{ } { }min , min ,i q i j q j− > − ; 

(iv)  if ,.ts > ,ts BB ≥ except for 1−= ms , in which case we may have 

1 2
1 ,
2m mB B− −≥  

where B = number of elements in the set B. 

Note: When m = 2, we will call it Hamming partition of qZ . Also when each 

2=sB , for 20 −<< ms , the partition will be called Lee partition, since in that 
case it leads to Lee-metric, refer to B e r l e k e m p [1]. 

Definition 3. S-K weights and distances: 
S-K weights: It can be mentioned that in S-K scheme of things, the weights 

and distances are defined in reference to a S-K partition. Thus for different S-K 
partitions of ,qZ  these, in general, will have different values for the same element 

of ,qZ  or for a vector over qZ . 

We first define the S-K weight of an element qZj∈  corresponding to a S-K 

partition 0 1 1{ , , ..., }.mP B B B −=   Denoting it by )( jWP , it is given by 
sjWP =)(  if sBj∈ , 10 −≤≤ ms . 
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Next, we define S-K weight ( )uWP  of ( ),...,, 21 naaau =  ,qi Za ∈  
corresponding to S-K  partition 0 1 1{ , , ..., },mP B B B −=   as the sum of the class-weights 
of its components, i.e., 

( ) ( )∑
−

=
n

i
ipP aWuW

1
. 

S-K Distance between two vectors: Given two n-vectors ( )naaau ,..,, 21=  
and ( ),,..,, 21 nbbbv =  where , ,i i qa b Z∈  the S-K distance between vectors u  and 
v associated with S-K partition P is defined as the sum of the S-K distances between 
their components, i.e., 

( ) ( )
1 1

, , ( ),
n n

P p i i P i i
i i

d u v d a b W a b
= =

= = −∑ ∑  

( ) ( ) ( )∑
=

−=−=
n

i
iipPP badvuWvud

1

, , refer to [2]. 

3. Partial error patterns 

Definition 4. Partial sets: It may be noted that in defining the S-K partition 
0 1 1{ , ,..., },mP B B B −=   of qZ  arranged in a circular order, sB is really the collection of 

all elements of qZ , on either side of 0, assigned a distance s from 0. We can thus 

call sB a subset or a “partial set”’ of qZ at distance s from 0. 

More generally, for an arbitrary element qZj∈  its “partial set at a distance s” 

is given by qss jBjB }{)( += , the addition being in each element of sB mod q. 

Example 1. Suppose that  we have qZ  = {0, 1, 2, 3, 4, 5, 6}, with 7=q , and 

let us consider a S-K partition of 7Z  given that  

{ } { } { }{ }0 1 20 , 1,6 , 2, 3, 4, 5P B B B= = = = . 

We see a partial set of weight 1 for 0 is 1B  and the “partial set of weight 2” for 0 is 

2B .  
Further the weight-1 partial set of another element, say of 5, is set of those 

elements of 7Z , given by 1 1 7(5) 5 {1 5, 6 5} {6, 4},B B= + = + + =  and  

2 2 7(5) 5 {2 5, 3 5, 4 5, 5 5} {0, 1, 2, 3}.B B= + = + + + + =  
Note: In this example it may be seen that the other two possible S-K partitions 

of 7Z  are  

{ } { } { }{ }L 0 1 2 30 , 1, 6 , 2, 5 , {3, 4}P B B B B= = = = =  
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and { } { }{ }H 0 10 , 1, 2, 3, 4, 5, 6 ,P B B= = =  respectively giving Lee and Hamming 

distances on 7Z , in terms of the definitions above. The partial sets of different 
weights (0, 1, 2 and 3 in the case of LP  and of weight 0, 1 in the case of HP ), the 
elements in HP  and L ,P  as can be seen are differently defined.   

Definition 5. Patterns of limited errors.  It may be easily realized that errors 
follow a pattern, which differs from a system to system.  A system in which an 
entry in a code word is received as another symbol, the error may be called 
“substitution error”. With S-K scheme of things, it is possible to consider various 
different limited kinds of substitution errors that were not possible under Hamming 
scheme of things. Some of the possible ones are illustratively detailed below: 

1. Single the error or e-random errors, in which an entry j is substituted by 
an element of jB +1  or some e-positions tjjj ,..,, 21  are similarly substituted 
correspondingly by an entry with their sum with 1 1 1 2 1, , ..., .eB j B j B j+ + +  We may 
call a code correcting e such errors “e 1B -error correcting code”, and it must have a 
minimum distance of 2e +1, caused by 1B  added substitution positions. 

2. Single error or e-random errors, in which an entry j is substituted by an 
element of jB +2  or some e-positions are similarly substituted by an entry with 
their sum with 2B . 

One can easily consider different kinds of substitution errors following 
modifications depending on the partial set (s) that determines the error patterns.  

In obtaining a bound on a necessary number of parity-checks for an e-error 
correcting code, it is customary to define a volume of a sphere of radius e around 
every code word and consider their mutual disjointness, etc. In the S-K study that 
we undertake, this idea can be looked more closely and, given an n-vector u, we can 
find numbers of patterns which have a specified S-K distance from the vector u.  

In the theorems that follow, we consider lower bounds on the number of parity 
check digits, r = n – k. 

Theorem 1. Given a S-K partition P = { }110 ,...,, −mBBB  of qZ , q prime, a 

necessary condition for the existence of an (n, k) code over qZ , correcting an error 
in e-positions of each of weight one is given by  

1
0

e
t n k

t

n
B q

t
−

=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑  or logqn k− ≥ 1

0
.

e
t

t

n
B

t=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  

P r o o f: It may be recalled that the elements in 1B  are of S-K weight 1 and 
that given an entry j, an error of weight 1 is obtained by substituting it by an 
element of jB +1 .  This can happen in || 1B  ways.  

Thus, given a code word, the number of vectors at a distance 1 from it are 

11
B

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
.  
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Similarly, the error patterns at a distance 2 are 
2

12
B

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, and those at a 

distance e are 
eB

e
n

1⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. 

Thus, the total number of vectors that are at a distance of e or less are from a 
vector u of length n: 

1
1

...
21 1

2
1

1
11 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− B
n

B
e

n
B

e
n

B
e
n eee

 or 1
0

.
e

t

t

n
B

t=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

In order that the code is able to correct e-errors of S-K weight 1 each, these 
vectors around any code word should be disjoint, that is for (n, k) code of kq code 
words, 

1
0

,
e

tk n

t

n
q B q

t=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑  

or  1
0

.
e

t n k

t

n
B q

t
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

This proves the result.  
Note: It may be worthwhile to reflect on the idea of partial sets of certain 

weights around elements of .qZ  Let us consider the keyboard of a computer, it has 
keys for various numbers and other symbols. Imagine punching a number or an 
alphabet key on it. While word processing, one may erroneously strike a key on one 
or two positions on either side of the right key, rather than any key on the keyboard.  
These likely positions will constitute the partial set of errors for the number or the 
symbol key pressed.   

Next we want to consider e-random errors, where the substitution errors are 
caused by elements at distances of 1 or 2, that is from two segments of partial 
errors are handled for correction.   

First we obtain the result in  
Lemma 1. Given a S-K partition P = { }110 ,...,, −mBBB  of qZ , q prime, and a 

vector of length n, the number of vectors obtained by substituting in e-positions, 
each position j by elements of  jB +1  or jB +2  , is given by  

( )eBB 21 + . 
P r o o f:  Let us consider that out of e positions selected, k of them have entry 

j that is substituted by an entry from jB +1  and the other e–k by entries 
from jB +2 . 

Then this can be done in 
kek BB

k
e −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
21  ways.  

Thus the total, as k varies from 0 to e, gives the required number of vectors as  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ −−− ekekeee |B|....BB

k
e

...BB
e

BB
e

B 121
2

2
2

1
1

212 21
 

or ( )1 2 .
e

B B+  
This proves the result.  
Note: It can immediately be seen in place of  1B  and 2B , that the result will 

hold for any two distinct or non-distinct partial sets sB  and tB , Also it can be 
generalized from just two to any numbers of partial-sets. We state the result for any 
s partial-sets below: 

Lemma 2.  Given a S-K partition P = { }110 ,...,, −mBBB  of qZ , q prime, and a 
vector of length n, the number of vectors obtained by substituting in e-positions, 
each position j by elements of k partial sets jBr +

1
, jBr +

2
, …, ,

sr
B j+  

1−≤ ms , is given by  

( )errr |B|....BB
s

+++
21

. 

Theorem 2. Given a S-K partition P = { }110 ,...,, −mBBB  of qZ , q prime, a 

necessary condition for the existence of an (n, k) code over qZ , correcting the error 
in e or less positions so that in these positions, the entry j when an error is received 
as an element of  jB +1  or jB +2  is given by 

( ) knt
e

t
qBB

e
n −

=

≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ 21
0

. 

P r o o f:  Now e positions of out n can be chosen in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
e
n

 ways and by the 

Lemma 2 given, these can undergo defined changes in ( )eBB 21 + ways.  
Thus, the number of ways any exactly e defined errors can occur, is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
e
n ( )1 2 .

e
B B+  

The total number of the error patterns in e or less positions is then given by  

( )1 2
0

.
e t

t

n
B B

t=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑  

With this number of error patterns around each code, the word to be disjoint, 
we get the necessary condition as 

( )1 2
0

.
e t n k

t

n
B B q

t
−

=

⎛ ⎞
+ ≤⎜ ⎟

⎝ ⎠
∑  
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Note: Hamming bound case: In the Hamming case, the partition of qZ is two 

partial sets }0{0 =B , and 1 {0,1, ..., 1},B q= −  so that 11 −= q|B| , and the result of 
these theorems reduces to the famous Rao Hamming bound [3].  

Example 2. Let { }0,1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12 ,qZ =  q = 13; to illustrate 

the results of the above two theorems we consider two S-K partitions of qZ . 
Case A. Let us first consider the S-K partition given by  

{ }32101 ,,, BBBBP = , 
where  

{ }00 =B , { }1 1,12 ,B = { }2 2, 3, 4, 9,10,11 ,B =  and { }3 5, 6, 7, 8 .B =  
For an (n, k) code correcting single error of weight 1, from Theorem 1, we 

have the bound  

knqB
n −≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 11

1 , where  n – k = r 

or 
1

1
B

qn
r −

≤ . 

For different values of r, here 1| | 2,B =  the upper-bound on n for (n, k),  
k = n – r, is given in Table 1. In the table, we have compared the limited || 1B  
single error correction bound by a Hamming single error correcting bound.  The 
gains are quite astonishing, for example for r = 3, these results tell us that the 
numbers of messages for || 1B  error correction can use 109513  messages while under 
-Hamming criterion, this number is a small fraction 18013 , and this proportion 
increases exponentially.  

For calculation of the rate, we have used the usual ratio, 
n
kR = . 

Table 1 

r 
Upper bound on n 

with a S-K single error 
Upper bound on n 

with a  Hamming-single error 
n k R N k R 

1 6 5 0.83333 1 0 0 
2 84 82 0.97619 14 12 0.85714 
3 1098 1095 0.99727 183 180 0.983606 
4 14280 14276 0.99972 2830 2826 0.998586 
5 185646 185641 0.99997 30941 30936 0.9998384 
6 2413404 2413398 0.999998 402234 402228 0.9999850 
7 31374258 31374251 0.9999998 522943 5229036 0.999998661 

Case B. Next we consider, for the S-K partition 1P , bounds on n for code 
correcting errors in a single position which are either of S-K weight 1 or S-K weight 
2. From Theorem 2 this bound is given by 
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( ) knqBB
n −≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 211

1 or ( )|B||B|
qn

r

21

1
+
−

≤ . 

In the example when q = 13, for different values of r here ( )21 BB + = 8, the 
upper-bound on n for (n, k), r = n – k, is given in Table 2. 

Table 2 

r Upper bound on n 
with S-K single error 

Upper bound on n 
with  Hamming-single error 

n k R n k R 
1 1 0 0 1 0 0 
2 21 19 0.90476 14 12 0.85714 
3 274 271 0.989051094 183 180 0.983606 
4 3570 3566 0.998879551 2830 2826 0.998586 
5 46411 46406 0.999892266 30941 30936 0.9998384 
6 150837 150831 0.999960222 402234 402228 0.9999850 
7 1960891 1960884 0.99999643 522943 5229036 0.999998661 

Here again, the thing to be observed is the number of messages with the same 
number of parity checks, correcting the limited patterns. 

Example 3. Next let us consider the S-K partition of qZ given by    

{ }32102 ,,, BBBBP = , 
where  

{ }00 =B , { }1 1, 2,11,12B =  and { }2 3, 4, 9,10 ,B =  { }3 5, 6, 7, 8 ,B =  
now for an (n, k) code correcting single error of weight 1, then (by Theorem 1) we 
have 

knqB
n −≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 11

1 , where  n – k = r  or 
1

1
B

qn
r −

≤ , 

and the numerical values are as given in Table 3.  
Table 3 

r Upper bound on n 
with S-K single error 

Upper bound on n 
with a  Hamming-single error 

 n k R n k R 
1 3 2 0.666666 1 0 0 
2 42 40 0.952380952   14 12 0.85714 
3 549 546 0.994535519 183 180 0.983606 
4 7140 7136 0.999439775 2830 2826 0.998586 
5 92823 92818 0.999946134 30941 30936 0.9998384 
6 1206702 1206696 0.999995027 402234 402228 0.9999850 
7 15687129 15687122 0.999999553 522943 5229036 0.999998661 

Suppose that we want to correct an error in 1 position of weight 1 and weight 
2, then (by Theorem 2) we have  
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( ) knqBB
n −≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 211

1  or   ( )|B||B|
qn

r

21

1
+
−

≤ , 

for different values of r,  the upper-bound on n for (n, k), r = n – k, is given in  
Table 4. 

Table 4 

r Upper bound on n 
with S-K single error 

Upper bound on n 
with a  Hamming-single error 

 n k R n k R 
1 1 0 0 1 0 0 
2 21 19 0.90476 14 12 0.85714 
3 274 271 0.989051094 183 180 0.983606 
4 3570 3566 0.99887955 2830 2826 0.998586 

5 46411 46406 0.99989227 30941 30936 0.9998384 

6 150837 150831 0.999960222 402234 402228 0.9999850 

7 1960891 1960884 0.99999643 522943 5229036 0.999998661 

Example 4. Here we shall illustrate some numerical bounds on n when instead 
of a single error, the errors in any two or less positions are considered of weight 1 
and then again either of weight 1 or 2. 

Let { }0,1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12 ,qZ =  q = 13, consider S-K partition of 
,qZ  given by  

{ }0 1 2 3, , , ,P B B B B=  
where  

{ }0 0 ,B =  { }1 1, 2,11,12 ,B =  { }2 3, 4, 9,10B = and { }3 5, 6, 7, 8 .B =  
Case A. Suppose that we want to correct the error in two positions of weight 1, 

then (by Theorem 1) we have  
2

1 11 ,
1 2

n kn n
B B q −⎛ ⎞ ⎛ ⎞

+ + ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) 2
1 1

1
1,

2
rn n

n B B q
−

+ ≤ −  

( )4 8 1 1,rn n n q+ − ≤ −  

( ) 1124 −≤− rqnn    or   ( ) 12 1 .
4

rqn n −
− ≤  

This is a quadratic Diophantine in-equation.  By trial it is quite possible to find 
the largest value of n satisfying this inequality. For different values of r, the upper-
bound on n for (n, k), r = n – k, is given in Table 5. 
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Table 5 

 
r 

Upper bound on n 
with S-K single error 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤−

4
112

rqnn  

Upper bound on n 
with a  Hamming-single 

error 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤−

12
156

rqnn  

 n k R n k R 
1 1 0 0 1 0 0 
2 4 2 0.5 2 0 0 
3 16 13 0.8125 5 2 0.4 
4 60 56 0.93333 20 16 0.8 
5 215 210 0.976744186 72 67 0.93056 
6 777 771 0.992277992 259 253 0.97683 
7 2800 2793 0.9975 933 926 0.9925 

Case B.  Next, let us consider the errors in two positions of weight 1, then (by 
Theorem 1) we have  

( ) ( )2
1 2 1 21 ,

1 2
n kn n

B B B B q −⎛ ⎞ ⎛ ⎞
+ + + + ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )1 8 32 1 ,n kn n n q −+ + − ≤  

( )8 32 1 1n kn n n q −+ − ≤ −  or  ( )8 4 3 1,n kn n q −− ≤ +  

( ) 14 3 ,
8

n kqn n
− +

− ≤  

for different values of r, the upper-bound on n for (n, k), r = n – k, is given in  
Table 6. 

Table 6 

r 

Upper bound on n 
with S-K single error 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤−

4
112

rqnn  

Upper bound on n 
with a  Hamming-single 

error 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤−

12
156

rqnn  

 n k R n k R 
1 1 0 0 1 0 0 
2 2 0 0 2 0 0 
3 8 5 0.625 5 2 0.4 
4 30 26 0.86666 20 16 0.8 
5 108 103 0.953704 72 67 0.93056 
6 388 382 0.984536 259 253 0.97683 
7 443 436 0.984199 933 926 0.9925 
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4. Concluding remarks 

In this paper we have introduced the idea of limited patterns of errors and have 
obtained results on the upper bounds on word lengths for specified limited patterns 
of errors. The use of S-K partitions and distances provides a choice of metrics 
matching the channel characteristics.  

It seems quite possible to extend this study to other bounds and to 
constructions of codes correcting limited patterns of errors.  
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